Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.12.21266249

ABSTRACT

Purpose Six-19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. Methods We analysed sera of 430 COVID-19 patients with severe and critical disease from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. Results The prevalence of neutralizing AABs to IFN- and IFN-{omega} in COVID-19 patients was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected, predominantly male (83%) patients (7.6% IFN- and 4.6% IFN-{omega} in 207 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with higher mortality (92.3% versus 19.1 % in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. Conclusion IFN-AABs may serve as early biomarker for development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients according to our algorithm for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Subject(s)
COVID-19 , Fever , Critical Illness
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.12.438219

ABSTRACT

Inflammasomes are cytosolic innate immune sensors that, upon activation, induce caspase-1 mediated inflammation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and is also detrimental in COVID-19 infection. However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine rich repeat (LRR) protein Ribonuclease inhibitor (RNH1), which shares homology with LRRs of NOD-like receptor family pyrin domain (PYD)-containing (NLRP) proteins, attenuates inflammasome activation. Mechanistically, RNH1 decreased pro-IL1b expression and induced proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and LPS-induced endotoxemia, which are dependent on caspase-1, respectively showed increased neutrophil infiltration and lethality in Rnh1-/- mice compared to WT mice. Further, RNH1 protein levels were negatively correlated with inflammation and disease severity in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity.


Subject(s)
Peritonitis , Endotoxemia , COVID-19 , Inflammation
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-245592.v1

ABSTRACT

BackgroundThe COVID-19 pandemic has led highly developed healthcare systems to the brink of collapse due to the large numbers of patients being admitted into hospitals. One of the potential prognostic indicators in patients with COVID-19 is frailty. The degree of frailty could be used to assist both the triage into intensive care, and decisions regarding treatment limitations. Our study sought to determine the interaction of frailty and age in elderly COVID-19 ICU patients.MethodsA prospective multi-centre study of COVID-19 patients ≥ 70 years admitted to intensive care in 138 ICUs from 28 countries was conducted. The primary endpoint was 30-day mortality. Frailty was assessed using the Clinical Frailty Scale (CFS). Additionally, comorbidities, management strategies and treatment limitations were recorded.ResultsThe study included 1346 patients (28% female) with a median age of 75 years (IQR 72-78, range 70-96), 16.3% were older than 80 years and 21% of the patients were frail. The overall survival at 30 days was 59% (95%CI 56-62), with 66% (63-69) in fit, 53% (47-61) in vulnerable and 41% (35-47) in frail patients (p<0.001). In frail patients, there was no difference in 30 day survival between different age categories. Frailty was linked to an increased use of treatment limitations and less use of mechanical ventilation. In a model controlling for age, disease severity, sex, treatment limitations and comorbidities, frailty was independently associated with lower survival.ConclusionFrailty provides relevant prognostic information in elderly COVID-19 patients in addition to age and comorbidities.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL